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ABSTRACT
As new gadgets that interact with the user through voice become
accessible, the importance of not only the content of the speech
increases, but also the significance of the way the user has spo-
ken. Even though many techniques have been developed to indicate
emotion on speech, none of them can fully grasp the real emotion
of the speaker. This paper presents a neural network model capable
of predicting emotions in conversations by analyzing transcriptions
and raw audio waveforms, focusing on feature extraction using con-
volutional layers and feature combination. The model achieves an
accuracy of over 71% across four classes: Anger, Happiness, Neu-
trality and Sadness. We also analyze the effect of audio and textual
features on the classification task, by interpreting attention scores
and parts of speech. This paper explores the use of raw audio wave-
forms, that in the best of our knowledge, have not yet been used
deeply in the emotion classification task, achieving close to state of
art results.

CCS Concepts
•Computing methodologies → Machine learning; Neural net-
works; Machine learning approaches;

Keywords
Emotion Classification; Feature Extraction; Signal Processing; Neu-
ral Networks; Convolutional Layers.

1. INTRODUCTION
With the introduction of new technologies, human computer inter-
action has increased immensely. Tasks such as asking your cell-
phone to automatically set calendar events or alarms, using a home
assistant to control your appliances or just ordering food online
with your voice have become routine. Everything was developed
to improve and facilitate from the simplest to the most complex
tasks people complete every day. However, these technologies still
lack a basic human ability: empathy. In order to develop empathy,
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machines must at first be able to understand and analyze emotions
from their users, allowing them to change their actions and speech
according to the situation.

In this paper, we propose a model that extracts features from raw
audio waveforms of speech and their transcriptions and classify
them into emotion classes. By utilizing convolutional layers on
audio waves and word embeddings, as proposed by [1; 2; 3], we
can extract features that when combined together, through different
forms, can classify speech’s emotion.

In later sections, we analyze the importance of the extracted tex-
tual and audio features by interpreting attention scores for both ele-
ments. These attention scores represent how much focus the neural
network should put on each feature, allowing it to efficiently utilize
the most important ones. We also show words and expressions that
the model has learned as characteristic for such emotions.

For all results on this paper, we used a multimodal dataset, named
IEMOCAP [4], which consists of two-way conversations among 10
speakers. The conversations are then segmented into utterances that
are annotated using 4 emotion classes: Anger, Happiness, Neutral-
ity and Sadness. We used 10% of the dataset as testing set and the
other 90% for training, resulting in 555 and 4976 utterances, re-
spectively. To the best of our knowledge, the state of the art perfor-
mance in the emotion classification task with this dataset achieves
an accuracy of 0.721 [5].

The main contributions of this paper are 1) a deep learning model
that classifies emotional speech into its respective emotion using
raw audio waveforms and transcriptions, 2) an audio model capable
of extracting audio features from raw audio waveforms, 3) a study
of acoustic and textual features importance in the emotion classi-
fication task using attention models and 4) an analysis of possible
emotional words in the IEMOCAP dataset. We tackle the human
computer interaction popularity increase by proposing a model ca-
pable of classifying speech emotion in order to allow systems to
understand users’ emotions and adapt their behavior according to
the user.

2. RELATED WORK
Many works in emotion recognition and classification use textual,
acoustic and visual features as input for such task [6; 7]. Acous-
tic features from audio data, such as Mel-Frequency coefficients,
are often extracted [8] using tools not embedded inside the classifi-
cation model. However, raw audio waveforms have achieved great
results on speech generation [9], modelling [10] and recognition
[11], but have not yet been fully explored in emotion classification.
The work with raw waveforms have surpassed and equalized pre-
vious results using features extracted outside the model in those



Figure 1. Graphical representation of our model.

areas. By using convolutional layers, we believe that it is possible
to also extract features that can be useful for the classification task.

As showed by Hazarika et al. [5], it is possible to achieve better re-
sults on the emotion recognition task by mixing acoustic and textual
features in different forms. The authors also analyzed many models
that tackle feature-level fusion in emotion classification, such as at-
tention, and their counterpart without such fusion, inspiring a part
of this paper. Also, attention models have achieved good results in
some tasks, such as image [12] and document [13] classification,
by allowing models to focus on the most important features of the
input.

3. MODEL
Our model has two different networks, one for the transcriptions
and other for raw audio waveforms, that are chained together with
different methods explained in Section 3.3. After combining the
features extracted with such methods, we use a fully connected
layer to classify the sentence into an emotion class. All networks
are trained at the same time with Adam Optimizer, L2 regulariza-
tion and using the PyTorch framework. The acoustic and textual
features extraction models are presented in Section 3.1 and 3.2, re-
spectively.

3.1 Raw Audio Waveforms
As explained in Section 2, raw audio waveforms have showed good
results on speech generation [9], modelling [10] and recognition
[11] and in this paper, we propose the use of these raw waveforms
for audio classification. Even though authors have usually extracted
features using outside tools, such as audio coefficients, for such
task, we believe that convolutional layers, as shown not only in
Computer Vision [14; 15] and Natural Language Processing [2],
can learn meaningful and complex features for audio classification
as well.

The raw audio waveforms are first padded with zeros in a batch, so
they have the same length. Our model has two convolutional lay-
ers with different filter sizes (k1 and k2) and number of channels (c1
and c2), along with Batch Normalization, ReLU and a residual con-
nection. The extracted features are then pooled with Adaptive Max
Pooling that outputs a fixed npool-sized vector for each waveform.

We use a GRU layer to capture the temporal dependency of the
waveform with nGRU units. Finally, the extracted audio features are
scaled to xaudio ∈ IR2×emb_size in order to be used in our attention
model.

3.2 Transcriptions
Each word of the sentence is either embedded using an embed-
ding matrix, trained alongside the model, or embedded using a pre-
trained Word2Vec [16] to xraw_text ∈ IRemb_size. We use convolu-

tional layers as proposed by Kim [2] to extract features from the
sentences.

A sentence, which is the concatenation of words, of length n is
first padded with zeros inside its batch and convoluted with a filter
w ∈ IRemb_size×p, p ∈ { f1, f2}. Each sentence is convoluted twice
with the same number of channels n f ms and max-pooled, result-
ing in vectors xtext,i ∈ IRnfms , i = 1,2. The vectors xtext,i are then
concatenated to xtext and used for the attention model explained in
Section 3.3.

We also use subsampling of frequent words in order to compensate
for the imbalance between frequent and rare words: each word wi
is discarded with probability Pi as in Equation 1, where f (wi) is the
frequency of the word in the dataset. We used the parameter t equal
to 8000.

Pi(wi) =
√

f (wi)/t (1)

3.3 Combining Text and Audio
As methods for combining text and audio, we propose attention
models along with trivial concatenation (Equation 2) and addition
(Equation 3). The attention models use as starting point the work
of Hazarika et al. [5].

y = xtext ⊕ xaudio (2)
y = xtext + xaudio (3)

In Equation 2, ⊕ represents trivial concatenation.

As for the attention models, we calculate the attention scores for
textual and audio features by using matrix multiplication and pro-
jecting the scores on either IRn, where n is the number of features,
or IR1. In the former, each feature has its own attention score, while
in the latter, the attention score is shared across all dimensions.

Equations 4-8 show the methods for calculating the attention score
ai of audio and text features. Let W m×n

i be m× n weights trained
alongside the model, xi ∈ IRn be either audio or text features and f
the ReLU function.

Att1
s : ai = f (W 1×n

1 xi) (4)

Att1
d : ai =W 1×n

2 f (W n×n
1 xi) (5)

Attn
s : ai = f (W n×n

1 xi) (6)

Attn
d1 : ai =W n×n

1 f (W n×n
1 xi) (7)

Attn
d2 : ai =W n×n

2 f (W n×n
1 xi) (8)



The feature fusion is done as following:

p = so f tmax([atext aaudio]) (9)
y = ptext � xtext + paudio� xaudio (10)

In equation (8), � indicates element-wise multiplication. In the
case of projection onto IRn, we use the so f tmax function on each
dimension of ai.

4. EXPERIMENTS
This section describes the experiments and results of the suggested
model as well as other methods for classifying the emotions in
IEMOCAP [4] dataset.

4.1 Experiment Setting
Table 1 shows the hyperparameters used during training.

Table 1. Training hyperparameters.
Hyperparameter Value
Learning Rate 3e−3

Learning Rate Decay 0.988 / epoch
Number of Epochs 150

Batch Size 30
L2 Regularization λ 6e−3

Dropout 0.55

All the hyperparameters for the acoustic and textual features ex-
traction networks are presented in Tables 2 and 3, respectively.

For the classification task after the proposed attention models, we
use a hidden layer with 96 neurons with dropout.

All the parameters were initialized following the previous work of
Hazarika et. al [5] with modifications in the acoustic model, due
to differences in input between our works. The hyperparameter op-
timization was performed by Grid Search, using accuracy as the
performance metric.

Table 2. Hyperparameters for acoustic features extraction
model.

[k1,k2] [c1,c2] npool nGRU
[25, 5] [4, 8] 200 32

Table 3. Hyperparameters for textual features extraction
model.

emb_size [ f1, f2] n f ms
1501, 3002 [3, 5] 200

Our dataset, IEMOCAP [4], is composed by two-way conversa-
tion videos between 10 speakers (5 male and 5 female) in English.
The videos are segmented into speech utterances, transcripted and
finally annotated into one of four emotions classes: Anger, Hap-
piness, Neutrality, Excitement and Sadness. We merge the Excite-
ment and Happiness classes, since they are close in activation and
valence. We separated 10% of the dataset for testing, resulting in
555 utterances, while training with the remaining 90%, composed
by 4976 utterances. As measurement, we will be analyzing the ac-
curacy of our model in the emotion classification task. We also

1For trainable embedding matrix.
2For pre-trained Word2Vec.

present the attention scores of our attention model in order to in-
spect the relative importance of acoustic and textual features in the
classification.

4.2 Results
The results achieved by our model with trainable word embeddings
are presented in Table 4. In the case of IRn, we present the aver-
age values of all attention scores for all dimensions. We also show
some results from Hazarika et al. [5], who extracted features from
audio using tools not embedded into the classification model. In
their work, uSA (Uni-dimensional Self-Attention) is the same as
our Att1

d model, mSA (Multi-dimensional Self-Attention) is Attn
d2

and Audio and Text are the unimodal models using only audio and
text, respectively. In their work, they utilized pre-trained word em-
beddings, instead of training it alongside the classification model.

Table 4. Emotion classification accuracy and attention scores
of audio and text features using a trainable embedding matrix.

Att1
d and Attn

s outperform other proposed attention methods.
Using both features increases the performance and their

importance is similar by attention score.
Model Accuracy Score (Audio / Text)
Att1

s 0.679 (0.516 / 0.484)
Att1

d 0.703 (0.509 / 0.491)
Attn

s 0.703 (0.500 / 0.500)
Attn

d1 0.694 (0.499 / 0.501)
Attn

d2 0.672 (0.500 / 0.500)
Concat 0.695 —–

Addition 0.676 —–
uSA [5] 0.721 Not available
mSA [5] 0.714 Not available

Audio [5] 0.541 —–
Text [5] 0.625 —–

We also ran Att1
d and Attn

s using Word2Vec pre-trained word em-
beddings. The results are presented in Table 5.

Table 5. Emotion classification accuracy and attention scores
of audio and text features. In these models, we use pre-trained

word embeddings. Att1
d outperforms Attn

s and previous
proposed models, with a higher impact of text features in the

classification task. Att1
d achieves close to state of the art results.

Model Accuracy Score (Audio / Text)
Att1

d 0.715 (0.423 / 0.577)
Attn

s 0.688 (0.500 / 0.500)

It is known that textual information is highly important for the un-
derstanding of emotion. Many words have an sentimental conno-
tation and can express emotion. Take as example the word "love".
Surely, one would not relate such word to a negative emotion, but
the opposite. In order to examine our model’s ability to associate
words to an emotion, we inspected the prediction ratios and mutual
information of each word in our dataset.

We propose, as a word analysis, scoring each word with the ratio
between how many times that word was in a sentence predicted to a
specific emotion and the total number of times it was present in the
testing set. For this analysis, we will be using Att1

d with pre-trained
word embeddings, since it achieved the highest accuracy.

For the Happiness class, the laughter tag, which comprehends when
the actors laughed, has a ratio of 0.867 and a big relationship with
the classification. The word "excited" also has a high ratio (0.750)



for the Happiness class. As for the Neutrality class, the expressions
"um" and "uh", which are speech fillers, are understood by the net-
work as neutral expressions, with ratios of 0.8 and 0.65, respec-
tively. As for the other classes, no word that achieved high ratios
for Anger and Sadness reflect the emotion, for example, "she’s"
(0.800) and "girl" (0.714) for the former and "else" (0.857) for the
latter.

In Table 6, we show the words with the highest mutual information
feature for each class on the proposed Att1

d model with pre-trained
embeddings and their ratios, as proposed.

Table 6. Words which have the highest mutual information
score on each class and their ratios in predictions. The

Happiness and Neutral classes have characteristic parts of
speech, while the other classes do not.

Emotion Top Words Ratio

Anger
not 0.462

she’s 0.800
business 0.667

Happiness
laughter 0.867

oh 0.704
so 0.592

Neutrality
um 0.800
can 0.667
uh 0.650

Sadness
they 0.023
else 0.857
the 0.121

5. DISCUSSION
The audio feature extraction model presented in this paper is a ba-
sic variation of the ResNet [17]. After analyzing the increase in
accuracy after adding residual connections, we tried to increase the
network; however, it was not possible, especially due to the small
size of the dataset, which caused quick convergence and overfitting.

As demonstrated in other areas of deep learning, such as computer
vision, convolutional layers have surpassed manual feature extrac-
tion when trained with large sets of data [15; 18]. Thus, we believe
that with a larger dataset, we can increase and improve the feature
extraction model, allowing it to learn more meaningful features. We
suspect that a model similar to what we propose has a higher ceiling
for improvement than models that use features extracted outside the
model.

Even though we were not able to achieve state of art results, we
strongly believe that with more training data, we can exceed them
and also apply this acoustic feature extraction model to other audio
classification tasks.

By analyzing the mutual information value of the words presented
in Table 6, the small size of the dataset can again be seen as a draw-
back. Due to the lack of training and testing data, many words that
normally would not be considered related to an emotion class, such
as "business" and "they" have a high mutual information, resulting
in a biased classification. This bias is caused by words not related
to a single emotion being annotated almost and even completely to
a single class. However, it is important to emphasize the model’s
ability to learn some happiness and neutrality related words and
expressions, such as the laughter tag and speech fillers.

Speech fillers are parts of speech that usually do not contain formal
meaning and are frequently composed by pauses and repairs. Even

though speech fillers are used in the most diverse situations and
it can be argued that they do not carry emotional information, we
claim that speech fillers can be classified as neutral. Neutrality can
be defined as not containing marked characteristics or features. We
believe that speech fillers, as neutrality, do not compose or support
either emotional spectrum and can be classified as a central and
neutral part of speech.

Our proposed ratios for word analysis reflect similar results from
the mutual information analysis, especially for the neutral and happy
emotions. Word fillers have high mutual information and ratios for
neutral speech, as the laughter tag in the Happiness class.

As expected and shown by previous works [5], mixing audio and
textual features result in higher classification accuracy. As shown
by our model, words and expressions carry emotional content and
can be used to more precisely classify speech into emotion. Even
though most words can be considered emotionally neutral since
they are used under most conditions and environments, the exis-
tence of expressions that demonstrate sentiment is an important
feature that must be tackled in emotion classification.

Alongside the use of textual information, acoustic features must be
used for a better emotion classification. Deep text classification can
be easily fooled [19]. As an example of the importance of acous-
tic features, we will also use the Google Cloud Natural Language
API3 to show that one can effortlessly classify most sentences to a
neutral sentiment, since the API does not consider how the speech
was portrayed. Take as example the simple sentence: "This chair
is good". Google’s API attributes a positive score of 0.7/1.0 to the
sentence. However, what if this sentence was spoken with an angry
voice, disagreeing with a previous idea? Surely, an emotion clas-
sification model cannot always classify such sentence to a neutral
class. Context and acoustic features play a big role in emotion clas-
sification and must be used for better results. Not only what is said,
but also how is extremely important for a more complete speech
understanding.

Table 7. Confusion matrix for our pre-trained Att1
d model.

Neutrality class is the worst performer, having the lowest
accuracy and the most mispredictions. Sadness has the highest

accuracy and Happiness has the highest recall.
Emotion Predictions Accuracy Recall

L
ab

el
s Anger 80 9 14 8 0.721 0.721

Happiness 16 117 25 6 0.713 0.801
Neutrality 13 18 109 31 0.637 0.673
Sadness 2 2 14 91 0.835 0.669

As shown by Table 7, we also analyzed that the Neutrality class
achieves the lowest accuracy and recall, with values up to 0.1 lower
than the other classes. The mispredictions of this class are spread
out all the other emotions, while for the other classes, most of these
errors usually predict the Neutrality class. We can interpret this re-
sult as the neutrality on speech being hard to classify since it does
not contain any characteristic words or expressions, as it embodies
most of the language used.

Classifying happy speech, as shown by the characteristic expres-
sions learned by our model and the highest recall, is learned well
by our model. Even though our model was not able to learn char-
acteristic parts of speech for the Sadness class, our model is able
to predict sad speech with high accuracy. This can be explained
by the smaller amplitude of the waveforms; sad speech is usually
3https://cloud.google.com/natural-language/



portrayed in a smaller volume and without large variances. Table 8
shows the average of the absolute waveforms (WaveAvg), the stan-
dard deviation of the averages (WaveAvgStd) and the average of the
standard deviations (WaveStdAvg) of the signals for each emotion
class.

Table 8. Averages and standard deviations of the raw audio
waveforms for each emotion. Sad speech is softer and has
smaller variances, while angry speech is louder and highly

variable.
Emotion WaveAvg WaveAvgStd WaveStdAvg
Anger 0.034 0.039 0.062

Happiness 0.019 0.023 0.034
Neutrality 0.009 0.007 0.017
Sadness 0.005 0.004 0.009

Black box models are hard to interpret, and many studies focus
on the interpretability of such models. With the use of attention,
we were able to analyze the attention scores and interpret the im-
portance of audio and textual features in the classification. As the
results of Table 4 and Table 5 indicate, the average of the attention
scores are quite similar throughout the testing set. When analyzing
each testing input separately, the values vary with a standard devi-
ation of approximately 0.09 in the case of Att1

d and 0.002 for Attn
s

without pre-trained word embeddings. As for the pre-trained Att1
d

model, the values have a standard deviation of 0.08. The higher at-
tention score for textual features in this model can be explained by
the fact that the word embeddings were trained with a large dataset,
allowing them to learn better features. These results confirm the hy-
pothesis that both audio and textual features play a big role in the
emotion classification task, and both should be used for better re-
sults.

6. CONCLUSION
In this paper, we introduced results of speech emotion classification
using transcriptions and raw audio waveforms, instead of the usual
use of audio features extracted using outside tools, achieving over
71% accuracy and close to state of the art results.

We also analyzed the importance of acoustic and textual features
in the emotion classification task by observing attention scores for
both inputs, showing that both are highly important.

Lastly, we examined which words and reactions have a high impact
in the emotion classification, especially in the Happiness and Neu-
trality classes, which contain characteristic words and expressions
learned by our model.

7. Future Work
As future work, a new dataset must be developed in order to in-
crease the number of emotion classes and data and, thus, improve
the model’s ability to effectively classify complex human speech.
With the new dataset, we intend to work deeply on the develop-
ment of the audio feature extraction model, since small changes,
even with our present dataset, resulted in increased performance.
Another important aspect of speech that we intend to work with is
the temporal dimensionality of conversations. Context, speech du-
ration, pauses, among other textual and acoustic features, play a big
role in emotional speech.

Also, we intend to use other machine learning techniques alongside
neural networks with the objective of improving the interpretability
of our model, in order to interpret at a lower level how the classifi-

cation process works [20].
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